A Comparison of External and Internal Photochemical Heavy-atom Effects in the Acenaphthylene System

By **BENJAMIN** F. PLUMMER* and **WILLIAM** I. FERREE, **JUN.**

(Chemistry Departwzent, Trinity University, San A xtonio, Texas **78284)**

Summary The photocycloaddition of 5-bromoacenaphthylene to cyclopentadiene gives varying proportions of $[4 + 2]$ and $[2 + 2]$ cycloadducts with quantum yields that are less sensitive to external heavy-atoms than the reported reaction of acenaphthylene with cyclopentadiene

THE photocycloaddition of acenaphthylene **(1)** to cyclopentadiene shows a marked sensitivity to external heavyatom solvents.¹ We report here that the similar reaction of 5-bromoacenaphthylene **(2)** is remarkably insensitive to external heavy-atom solvents (Table).

The cycloadducts (3) , (4) , and (5) were isolated from thermal or photochemical runs by chromatography of the reaction mixtures over AgNO₃-treated silica. The structures are assigned by comparison of their n.m.r. spectra with

that *(5)* thermally isomerizes to **(3)** on g.1.c. at temperatures above **160".** The interconversion is a symmetry-allowed $\left[\sigma_{s}^{2} + \sigma_{s}^{2} \right]$ 1,3 sigmatropic shift.³

Except in acetonitrile, the nearly constant ratios of products formed in each solvent suggest that the products arise from the excited triplet state of **(2).** The Figure compares the quantum yields for cycloaddition of **(1)** and **(2)** to cyclopentadiene as a function of the bound bromine in the solvent. Although the cycloaddition of **(2)** is more efficient than that of **(I)** in cyclohexane, the difference in sensitivities to external bromine atoms is such that in the brominated solvents the quantum yield of **(2)** falls behind that of **(1).** Clearly, external and internal atoms are affecting the reaction differently, for otherwise the quantum yield of **(2)** should be at least that of **(1)** in any solvent. adiene as a function of the b
Although the cycloaddition
nat of (1) in cyclohexane, the
external bromine atoms is sue
vents the quantum yield of (2
arly, external and internal at
differently, for otherwise the extend at
e

A possible mechanism incorporating a minimum of steps is :

1A **FA** 1A ----+ ,A **kic kisc kd kr 3A** + C ----+ Products \ **^H**

where $A = (1)$ or (2) , and $C =$ cyclopentadiene. Application of steady-state approximations yields relationship **(1)**

$$
\begin{array}{ll}\n\text{(4)} & \text{for the quantum yield of reaction, } \phi_{\text{r}}. \\
\text{re isolated from} & \phi_{\text{r}} = \left\{ \begin{array}{c} k_{\text{isc}} \\ \hline k_{\text{ie}} + k_{\text{isc}} \end{array} \right\} \left\{ \begin{array}{c} k_{\text{r}}(C) \\ \hline k_{\text{d}} + k_{\text{r}}(C) \end{array} \right\} \tag{1} \end{array}
$$

tures are assigned by comparison of their n.m.r. spectra with The available evidence suggests that external heavy those of the corresponding cycloadducts of (1) .^{1,2} We find atoms affect k_{isc} much more than other k_d may also be affected.⁴ Indeed, the k_{isc} of (1) appears

Quantum yields and product ratios for photoaddition of **(2)** *to* **TABLE** $cyclo pentadiene^a$

Ō.						Product ratiob		
			Solvent	Ouantum yield, ϕ_r		(3) endo	(4) exo	(5) $2+2$
Δ			Cyclohexane $\ddot{}$ Acetonitrile \cdot \cdot	\cdot \cdot	0.067 0.086	0.53 0.66	1.93 3.00	$1 - 00$ 1.00
			Bromobenzene		0.087	0.55	1.68	$1-00$
			Ethyl bromide \cdots		0.077	0.60	2.00	1.00
			1.2-Dibromoethane		0.093	0.64	1.74	1.00
ŀ٥	ን በ	3.O	Methylene bromide		0.112	0.54	1.66	1.00

^aAll samples were degassed with slow nitrogen purge for **30** min prior to each run and then sealed. Concentrations of **(2)** FIGURE. Quantum yields of cycloaddition to cyclopentadiene of and cyclopentadiene were 0.010 and 3.76 M, respectively.
(1) (O) and (2) (Δ) as a function of concentration of bound bromine Product mixtures were analysed explanation of our data primarily in terms of variations in *hise* appears inadequate, since this requires that enhancement of k_{isc} by external heavy-atoms is by much smaller factors in (2) than in (1) .^{6,7}

The results are better explained in terms of the above mechanism if k_d is relatively much larger, compared to k_r (C), in (2) than in (1). k_{ise} must then also be much larger in (2) than in (1) , enough to compensate for the larger k_d and account for its greater ϕ_r than that of (1) in cyclohexane. Examination of equation **(1)** shows that if both $k_{\rm d}$ and $k_{\rm isc}$ are relatively large, $\phi_{\rm r}$ is less sensitive to increases in k_{isc} and more sensitive to opposing increases in

hd. We thus conclude that our data are best accounted for if internal heavy-atoms incerase $k_{\rm d}$ by much larger factors than do external heavy-atoms, in accord with spectroscopic evidence.⁴ Some of the increase in ϕ_r may be arising from a heavy-atom effect on k_{r} ⁵ Preliminary experiments with ferrocene as a quencher and with varying concentrations of cyclopentadiene suggest that this possibility is unlikely.

We acknowledge the support of the Robert **A.** Welch Foundation and a matching fund grant from the National Science Foundation for purchase of the **T-60** n.m.r. spectrometer.

(Received, 29th Nouembev **1971** ; *Coriz.* **2042.)**

¹R. **12.** Plummer and D. M. Chihal, *J. Amer. Chem. SOC.,* **1971, 93, 2071.**

² R. Baker and T. J. Mason, *J. Chem. Soc.* (C), 1970, 596.
³ R. B. Woodward and R. Hoffmann, ''The Conservation of Orbital Symmetry,'' Verlag Chemie, GmbH, Weinheim, Germany, 1970, pp. 114—140.

⁴ G. G. Giachine and D. R. Kearns, *J. Chem. Phys.*, 1970, **52**, 2964.

⁵ R. Hoffman, P. Wells, and H. Morrison, *J. Org. Chem.*, 1971, **36**, 102, footnote 31.

⁶ S. P. McGlynn, R. Sunseri, and N. Chris

-
-
-
- S. P. McGlynn, M. J. Reynolds, G. W. Daigre, and N. Christodoyleas, *J. Phys. Chem.,* **1962, 66, 2499.**